量子通信之所以安全有保证,主要是因为量子力学具有三大基本原理:测不准原理、不可克隆原理、纠缠态原理。
但是时隔17年后,破解加密算法的时间就缩减到了8个月左右。而现在量子计算出现后,计算速度和能力大大提升,使得破解RSA129加密算法的时间进一步缩减到了几十秒。
因此,采用全新信息安全技术提升安全防护能力已经迫在眉睫。与量子计算如影随形的另一项技术——量子通信进入了人们视野。
以高安全著称的量子通信出现的必要性何在?量子通信又如何确保通信信息的安全性?本文对上述问题进行分析和说明。那么,
2017年以来,在代表通信技术前沿阵地的量子通信领域,我国可谓是捷报频传:首先是今年3月量子通信京沪干线开始最后阶段的贯通测试,其次是量子纠缠分发实现千公里量级的传输,再次是近日我国成功实现水下量子通信实验。一个个里程碑进展的获得,代表我国不断攻克量子通信的关键技术难题,将量子通信研究带入了新时代。
量子的纠缠态
其根本原因在于,传统的通信加密一般在加密数据和传输介质上做文章,而这种加密方法只能增加破译的难度,无论采用先进算法破译,还是采用超级计算机暴力破译,破解传统通信加密数据只是时间长短的问题。随着计算能力的提升,破解时间越来越短,甚至达到秒级。
不可克隆原理,是指量子态不同于经典状态,它非常脆弱,任何测量都会改变量子态本身,传输过程中如果有第三方克隆某个量子态,那么该量子态就会被毁灭,因此一个未知的量子态是无法被精确克隆的。不可克隆原理,有效杜绝了非法分子通过克隆复制信息的可能。
正所谓“道高一尺魔高一丈”,安全威胁和防控措施从来都是“矛和盾”的关系,因此安全防护不可能一劳永逸,而是需要根据新的形势不断自我提升,这就是量子通信出现的必要性。
测不准原理,即海森堡不确定性原理。与粒子的位置和动量可以同时取确定值所不同的是,受粒子波动性的影响,两个非对易的量子不可能同时被精确测量。测不准原理,使得对任何量子传输进行监听、监测的目的都会落空。
近年来“斯诺登事件”的爆发给我国敲响了信息通信安全的警钟,而“WannaCry”、“Petya”等勒索病毒的出现,则表明在互联网前沿领域还存在很多不安全的地带。因此,加强网络与信息通信安全保护、构筑信息安全防护的长城,是我国信息通信领域的当务之急。
在探讨量子通信之前,首先看看量子是什么。量子是能表现出物理特性的最小单元,是能量的最基本携带者;一个物理量如果存在不可分割的最小基本单位,那么这个物理量是量子化的。而量子通信则是结合量子物理学和密码学,利用量子态的物理性质提供绝对安全保障的通信方式。
业界普遍认为,量子通信是当前世界上最为先进的保密通信技术,以量子通信为基础,可以构筑天地一体化、高速灵活、安全稳定的通信网络基础设施。这样的网络基础设施不仅可以应用于国防、军事等国家级保密领域,还可以应用在数据中心、金融、区块链、物联网等国民经济领域。
目前业界使用最为广泛的公钥加密算法,为1977年由美国三位科学家提出的RSA129算法。该算法的原理是,将两位质数相乘获得一个129位的数字,其中的两个乘数就是隐藏在公钥加密算法中的关键信息。这一加密算法的原理是:两个质数的乘积计算非常简单,但是要把乘积进行因式分解难度就特别大,而且数字越大,越难以破解。按照1977年的计算能力,破解129位的数字大约需要4亿亿年。
近期评论